Tetrahedron Letters Vol. 21, pp 2965 - 2968 ©Pergamon Press Ltd. 1980. Printed in Great Britain

> ¹³C NMR STUDIES ON LICODIONE AND RELATED COMPOUNDS IN EQUILIBRIUM MIXTURE OF KETO AND ENOL FORMS

Shin-ichi Ayabe and Tsutomu Furuya* School of Pharmaceutical Sciences, Kitasato University Minato-ku, Tokyo, 108 Japan

<u>Abstract</u>: ¹³C NMR data of licodione and its methylated derivatives in keto-enol tautomeric mixture are given, and evidence for correct assignment of α -proton and methyl signals in ¹H NMR is presented.

Proton magnetic resonance (¹H NMR) spectroscopy has been one of the most useful methods for elucidation of the ratio of keto, enol and hemiketal forms of substituted dibenzoylmethanes existing in tautomeric mixture in solution.¹⁾ Correct assignments of signals of α -protons are aritical for this purpose, but reported assignments for naturally occurring dibenzoylmethanes seem to be ambiguous.²⁾ Now, ¹³C NMR studies on licodione(1), a component of <u>Glycyrrhiza</u> cell culture,^{3a)} and its methylated derivatives(2-4)^{3b)} have been carried out to confirm the assignments of ¹H NMR signals. In this paper, we will discuss mainly on the assignments of α -atom signals and demonstrate the utility of ¹³C NMR for elucidation of the existing forms of dibenzoylmethanes.

Spectra were recorded at 25.15MHz with JEOL PS-100 instrument with JEOL EC-100 computer at $22^{\circ}(\underline{1}-\underline{3}, \underline{5}, \underline{5})$ and $30^{\circ}(\underline{4})$. Samples were dissolved in acetone-d₆ at the concentration of 0.5-0.7 M with TMS as internal standard (δ 0). Chemical shifts of observed signals are summerized in Table 1.

Observation of the spectra of symmetrical model compounds, 2"-hydroxy- $(\frac{5}{2})$ and 2'-deoxy- $(\frac{6}{2})$ licodiones,^{3c)} established that α -carbon of keto form gives a signal at δ 49-55 and enol form δ 90-97. In the spectrum of 5, which exists exclusively in keto form because of two intramolecular hydrogen bondings, only a signal at δ 49.3 (triplet in off-resonance spectrum) is

2965

observed, while $\underline{6}$ gives a signal at δ 91.4 (doublet) and methylene carbon signal is hardly detectable, indicating predominant enol form. Proton selective decoupled spectra clarified that protons attaching to a-carbon give signals at δ 4.65 in $\underline{5}$ and δ 6.98 in $\underline{6}$. These findings were applied to the assignment of 13 C NMR spectrum of licodione($\underline{1}$), in which both olefinic(δ 90.5) and methylene(δ 49.0) carbon signals, although the latter is very weak, are detected. 1 H NMR spectrum of $\underline{1}$ shows olefinic(δ 6.97) and methylene(4.62) proton signals which integrate 0.7 and 0.6 protons respectively, indicating $\underline{1}$ exists in 70% enol and 30% keto forms.

Differences in chemical shifts of aromatic carbons between keto and enol forms were also observed (see Table 1).

4"-O-Methyl-($\underline{3}$) and: 4',4"-di-O-methyl-($\underline{4}$) licodiones give the ¹³C NMR spectra which are essentially the same as that of $\underline{1}$, except for appearance of one methyl signal in each.

In higher magnetic field of ¹³C NMR spectrum of 2'-0-methyl-licodione($\underline{2}$), readily assignable methyl signal at $\delta 56.1$ and two more minor peaks at $\delta 54.4$ and 55.6 appear. The signal at $\delta 54.4$ was assigned to methylene carbon referring the spectrum recorded after the addition of D_2^{0} . As shown in Fig.l, intensity of signals of α -carbons, which bear labile protons in keto form, remarkably decreases by the addition of D_2^{0} . The signal at $\delta 55.6$, remaining unchanged by D_2^{0} addition, would be then assigned to methyl carbon of the minor (keto) form.

These ¹³C NMR assignments were successfully utilized to confirm the assignment of ¹H NMR signals. ¹H NMR of 2 reveals small peaks at $\delta 3.61(0.5H)$ and $\delta 4.45(0.3H)$ in addition to the signal of olefinic proton of enol form at $\delta 7.23(0.8H)$, while no signals at $\delta 3-4$ appear in the spectra of $\frac{3}{4}$, $\frac{4}{4}$ and 4'-0-methyl-licodione. We tentatively assigned the signal at $\delta 3.61$ to methyl proton of keto form regarding the unusual intensity of another methyl signal at $\delta 3.97(2.4H)$, in accordance with high field shift of <u>ortho</u>-methoxy signal in keto form of a synthetic dibenzoylmethane noted by Wagner et al.^{1a} Reported ¹H NMR data of natural products, milletenone^{2a)} and ovalitenone^{2c)} (glabra-I)^{2d)} fit with the observed spectrum of $\frac{2}{2}$, but in these reports signals at $\delta 3.6-4.0$ have been assigned to methylene proton of keto form and $\delta 4.4-4.5$ to olefinic proton of enol form assuming a particular conformation with a twisted benzene ring.

Unambiguous assignments of higher field signals in 13 C NMR of 2 were made by comparing ¹H noise decoupled, ¹H coupled and ¹H selective decoupled spectra recorded at 67.89 MHz with Bruker WH-270 instrument (Fig.2). A weak signal at δ 55.6, which splits to quartet in ¹H coupled spectrum, is now surely assigned to methyl carbon of keto form, and this carbon is shown to bear protons giving a peak at δ 3.61 in ¹H NMR spectrum. Thus the unusual features of ¹H NMR spectra of <u>ortho-methoxy-dibenzoylmethanes</u> should be attributed to the difference of chemical shifts of α -proton signals and also methoxy signals in keto and enol forms.

<u>Acknowledgement</u>: We should like to thank Prof. T. Miyazawa, Prof. T. Takahashi, Dr. T. Higashijima and Dr. T. Murae, Faculty of Science, University of Tokyo, for the measurement of 67.89 MHz ¹³C NMR spectra. We also thank A. Hatano and N. Kondo for 25.15MHz spectra.

	Compounds									
Carbon No.	5 keto	6 ca.90% enol	enol l	keto	enol	2 keto	enol	3 keto	enol	4 keto
1,3	1 99. 5	185.4	200.3 193.0	194.9 ^{b)} 177.3	(193.2 182	186.6 .4	200.0 {192.9	195.0 176.8	, 195.1	177.3
2	49.3	91.4	91.1	49.7	96.8	54.4	91.4	49.7	91.6	49.9
1'	114.1	-	112.8	114.2	116	.6	112.8	114.2 ^{f)}	113	.3
2'	166.4 ^{C)}	-	165.9 ^{d)}	166.4 ^{d)}	163.3 ^e) _{164.3} e)	165.2 ^g) _{165.8} g)	164.1 ^h) _{164.9} h)
31	103.6	-	104.1	103.5	100.1	99.7	104.0	103.5	102.0	101.6
41	166.0 ⁰⁾	-	165.	ı ^{d)}	161	.9 ^{e)}	163.9 ^g) _{164.7} g)	166.8 ^h) _{167.4h)}
5'	109.1	-	109.0		108.7	108.9	9 109.0		108.3	
6'	134.5	-	132.1	134.6	132.4	133.4	132.1	134.4	131.7	134.0
1"	-	127.8	125.6		128.5		126.6		126.6	
2",6"	-	130.1 132.0 ¹)	129 .8	129.6	130.1	131.4	129.4	131.7	129.6	130.4
3", 5"	-	116.2	116.3	116.1	116.2	116.0	114.8	114.5 ^{f)}	114.9	114.7
4"	-	162.2	162.2	163.2	162.1 ^ë) _{162.6} e)	165.9 ^g) _{166.4} g)	166.0 ^h) 166.4 ^{h)}
снз	-	-	-		56.1	55.6	55	.8	55	.9

Table 1. 13 C NMR Chemical Shifts of Licodione and Related Compounds (25.15MHz, (CD₃)₂CO, TMS as internal standard)^{a)}

a) Recording conditions were as follows: pulse width,20 µsec(45°); repetition time, 2.0 sec; frequency range, 6250 Hz; data points, 8191; number of scans, 1200-1800. Error of the shift value is about 0.1 ppm. b) Assignments of distinct signals have not been made. c-h) Assignments bearing the same superscript may be interchanged. i) Possibly the signal of the minor (keto) form is observed.

REFERENCES

- a) H. Wagner, O. Seligmann, L. Hörhammer, M. Nögrådi, L. Farkas, J. Strelisky and B. Vermes, Acta Chim. Acad. Sci. Hung., <u>57</u>, 169(1968).
 b) J. Chopin, "Topics in Flavonoid Chemistry and Biochemistry", ed, by L. Farkas, M. Gåbor and F. Kållay, Elsevier, Amsterdam, 1975, pp 154-161.
- 2) a) H. Khan and A. Zaman, Tetrahedron, <u>30</u>, 2811(1974). b) B. S. Joshi and D. H. Gawad, Indisn J. Chem., <u>14B</u>, 9(1976). c) R. K. Gupta and M. Krishnamurti, Phytochemistry, <u>16</u>, 1104(1977). d) G. P. Garg, N. N. Sharma and R. N. Khanna, Indian J. Chem., <u>16B</u>, 658(1978).
- 3) a) T. Furuya, S. Ayabe and M. Kobayashi, Tetrahedron Letters, <u>1976</u>, 2539. b) S. Ayabe,
 T. Yoshikawa, M. Kobayashi and T. Furuya, Phytochemistry, in press. c) S. Ayabe,
 M. Kobayashi, M. Hikichi, K. Matsumoto and T. Furuya, ibid., in press.

(Received in Japan 28 April 1980)